Global Solution of Fully-Observed Variational Bayesian Matrix Factorization is Column-Wise Independent
نویسندگان
چکیده
Variational Bayesian matrix factorization (VBMF) efficiently approximates the posterior distribution of factorized matrices by assuming matrix-wise independence of the two factors. A recent study on fully-observed VBMF showed that, under a stronger assumption that the two factorized matrices are column-wise independent, the global optimal solution can be analytically computed. However, it was not clear how restrictive the column-wise independence assumption is. In this paper, we prove that the global solution under matrix-wise independence is actually column-wise independent, implying that the column-wise independence assumption is harmless. A practical consequence of our theoretical finding is that the global solution under matrix-wise independence (which is a standard setup) can be obtained analytically in a computationally very efficient way without any iterative algorithms. We experimentally illustrate advantages of using our analytic solution in probabilistic principal component analysis.
منابع مشابه
Global analytic solution of fully-observed variational Bayesian matrix factorization
The variational Bayesian (VB) approximation is known to be a promising approach to Bayesian estimation, when the rigorous calculation of the Bayes posterior is intractable. The VB approximation has been successfully applied to matrix factorization (MF), offering automatic dimensionality selection for principal component analysis. Generally, finding the VB solution is a non-convex problem, and m...
متن کاملGlobal Analytic Solution for Variational Bayesian Matrix Factorization
Bayesian methods of matrix factorization (MF) have been actively explored recently as promising alternatives to classical singular value decomposition. In this paper, we show that, despite the fact that the optimization problem is non-convex, the global optimal solution of variational Bayesian (VB) MF can be computed analytically by solving a quartic equation. This is highly advantageous over a...
متن کاملApproximate Method of Variational Bayesian Matrix Factorization/Completion with Sparse Prior
We derive analytical expression of matrix factorization/completion solution by variational Bayes method, under the assumption that observed matrix is originally the product of low-rank dense and sparse matrices with additive noise. We assume the prior of sparse matrix is Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for derivation of matri...
متن کاملBayesian factorization and selection for speech and music separation
This paper proposes a new Bayesian nonnegative matrix factorization (NMF) for speech and music separation. We introduce the Poisson likelihood for NMF approximation and the exponential prior distributions for the factorized basis matrix and weight matrix. A variational Bayesian (VB) EM algorithm is developed to implement an efficient solution to variational parameters and model parameters for B...
متن کاملOn Bayesian PCA: Automatic Dimensionality Selection and Analytic Solution
In probabilistic PCA, the fully Bayesian estimation is computationally intractable. To cope with this problem, two types of approximation schemes were introduced: the partially Bayesian PCA (PB-PCA) where only the latent variables are integrated out, and the variational Bayesian PCA (VB-PCA) where the loading vectors are also integrated out. The VB-PCA was proposed as an improved variant of PB-...
متن کامل